Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(m+6)(m26m+36)
(m+6)*(m^2-6m+36)

Step by Step Solution

Step  1  :

Trying to factor as a Sum of Cubes :

 1.1      Factoring:  m3+216 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  216  is the cube of   6 
Check :  m3 is the cube of   m1

Factorization is :
             (m + 6)  •  (m2 - 6m + 36) 

Trying to factor by splitting the middle term

 1.2     Factoring  m2 - 6m + 36 

The first term is,  m2  its coefficient is  1 .
The middle term is,  -6m  its coefficient is  -6 .
The last term, "the constant", is  +36 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 36 = 36 

Step-2 : Find two factors of  36  whose sum equals the coefficient of the middle term, which is   -6 .

     -36   +   -1   =   -37
     -18   +   -2   =   -20
     -12   +   -3   =   -15
     -9   +   -4   =   -13
     -6   +   -6   =   -12
     -4   +   -9   =   -13


For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (m + 6) • (m2 - 6m + 36)

Why learn this

Latest Related Drills Solved